
 

Basic Properties of a Time series

A time series is simply
a

discrete time stochastic process

Xt t e Z Z is the set

of integers 0 I 2

we will assume that Xt t e Z

is a second order process that is

E XI so

for all te Z



Mean Function

The mean function MH te 2

of a time series is defined

by
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Covariance Function

The auto covariancefunction of
a time series Xt te 2 is
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Covariance Function

Notice

Var Xs Cov Xs Xs
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Correlation Function

The auto correlation function of
a time series Xt te 2 is
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Example 1 Coin Flips

Suppose Ye te Z are

independent and identically distributed

with

Ye
up i p

I n p p

i what is the mean function of
Yt te Z

ii What is the correlation function of

Yt te Z



Example 2 Random Wa

Let Ye te Zt be as in the

previous example Zt 0 1,2

Define

Xt Xt t E te us

Xo 0

i what is the mean function of
Xt te Z

ii What is the correlation function of

Xt te Z



The mean function

M t o t eat

Proof Is IE XD

The autocorrelation function

f s t FEET site 1.2

Proof



For the discrete random walk the

auto correlation function looks like
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Generating a Random Walk

initialize seed

set seed 420

generate win flips
Y rbi nom 100 I 0.4

convert to Is and Is

Y 2 1 I

initialize the walk

X hep o 100

create the walk

for i in 2 100

XD XE D YET

3



Example 3 Moving Average

Suppose the random variables

in the discrete time stochastic

process Xt te Zt are related

as follows

XE Cott Eet Et t 1,3

Xo 0

Et are vid E Et o Vance o

the above relationships are
sometimes

collectively called a model co and of
are called model parameters



Let's calculate the mean and

auto covariance and autocorrelation

functions

µ t Co t 2,3

Th Is t o

81st
274 I s t I

0 I s t

I s t o

f s.t it I s t I

0 I s t 1

Proof



How does the autocorrelation

function look

j
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More Intuition Can we simulate

data from this process

generate the E terms

E r norm 100 O 2

initialize the series

X hep o 100

choose constant
co I

create the series

for t in 2 100

Xlt co t iz x Eft tea D



Let's make sure we understand

some properties of the
covariance function

i r s t rft s

Ci 8 s t I 8 o t s

Liii 8 s t I rcstt.tt



Second Order Stationary or Covariance

Stationary Processes

A discrete time stochastic

process Xt t e Z is

said to be covariance stationary

if Xue te Z and

Xt t e 2 have the same

mean and covariance functions
for all T E Z



In other words covariance stationary
means

OI µ t t T Mlt t nee Z

Y St T ttt 86 t t TE Z

any fixed s t

The first condition is
easy to interpret

The second condition can be tricky

Best to interpret as covariance

between random variables is dependent

only on the time lag It 4 but not

on t s



For the moving average example
recall the mean and the

covariance functions that we calculated

µ t Co t 2,3
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In general if a process

Xt te Z is covariance

stationary then
i Mt M

Lii 81st 8 o t s

8 h

where h is called the log
iii Mst Hh

since 8th 8th it is sufficient
to consider h o



How do time series generated

from a covariance stationary

process look

uranium

whiner



Which of the following series

are covariance stationary

I Xt 0.2 Xt t Et

I Xt O Itt 0.2 Xt t Et

Ty Xt Xt t Et

Tg Xt 25in 21T Et Y

Y Arif 0,1

Assume Et ie N o l te

and Xo 0



If the time series

Xt te Z is covariance

stationary then which of

the following are true

i MCO I left

f s.tt fl s t

iii lls.tt I Tfs t

iv f o h tf h o



Example

consider the time series

Xt 2 Cos 21T Fatu

t E Z

lil Find the mean and autocorrelation

functions

ii Ts Xt te 2 wv stationary



A process Xt te Z is

said to be strictly stationary

if Xt Xt Xen and

Xt te Xt.tt Xtntz have

the same joint distribution

for all t ta tn



Mind the Difference

Covariance Stationary

Xt te Z and te 2

have the same mean and covariance

functions F E E Z

strictly stationary

Xt Xt Xen S X
t.tn Xtate Htt

have the same joint distribution



Differencing and Backshift

Differencing is an

operation on a time series

often in an attempt to

stationarize it



Differencing is denoted

by Txt

TX Xt Xt

I X ILI Xt
I Xt Xt

Xt 2Xt it Xt z



Backshift is denoted by

B Xt

B Xt Xt

So

I X XE Xt A B Xt

1 B X I 2B BY Xt
I Xt



Differencing m times

is multiplying by
1 13

I X I B Xt



EXAMPLE

Find the mean and

auto covariance functions

of Yt Yet te Z

where Et te Z is

white noise



EXAMPLE

Suppose

Y p pit Xt te Z

where Xt te Z is

mean zero and cov stat

with lag k autocov 8 k

1 Show that Ye te Z

is not cov stat

2 Show that I Yt is cov stat



In the previous problem

suppose

Y felt Xt

and f t a.tmta.tt am

Then I Yt is cov.stat

if ne m and not cov stat

if ne m



Sample Estimators

If Xt te Z is

covariance stationary then

i att u htt c 2

Ci VCs tf 86 Is H

Y h h 0,1

lag
iii f St No Is H

T h h o l

Can it VC S k be estimated



Suppose Xt t I z

is covariance stationary and

X X Xn are the first
n observations

We want to estimate

Me 8th Nh

M IE XD
Hh lov Xt Xtth

fth Rhyno



n

RCH A in 2 Xj
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8 h Xi A Hittin

h O l 2 n
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Beware of Dependence

During Estimation

Let's take an example
Suppose

Yt M t Xt te Z

where Xt te Z is a

covariance stationary time

series with auto covariance function

8 h he o and zero mean



Beware of Dependence

During Estimation

We do not know u and

8th h o and so we want

to estimate these from data

Suppose we have observed data

Yi Ya Yn



Beware of Dependence

During Estimation

Notice that the mean function

Mt ELI Mt o

Mt M ft e Z

Hence
n

Me Yj
j



Beware of Dependence

During Estimation

Let's see how sure we can

be about te
h

Van Van I Yj
j l

Van EYj I



Beware of Dependence

During Estimation

Van if194 2 4 haley

Make sure you
understand how

I got the above expression



Beware of Dependence

During Estimation

When n is large and

tech c o

h l

o

Vana 11 em
h o

e g if Th 9h h o

then

Vinci 5 It


